(1) Cartan-Weyl-Hopf the orem: Let G be a compact (We state \& prove the) Lie group. Let $t c g$ be a maximal Lie algebra version Abelian sub-algebra [Wotan ideal]

Then (a)-Cartan $\forall x \in g . \quad \exists a \in G \quad \underset{a \in G}{A} d(a)(x) \in t$
 X under Ad-action of G then $\exists g \in G \quad \operatorname{Ad}(g)\left(t_{1}\right)=t_{2} \ldots$ Maybe Weyl
(c) Let S be a toms \int roup in G. Let g be an element $(\in G)$

Hoof Such that $G \in Z(S)$ - Centralizer of S.
Then $\exists T$ - a maximal tories. $T \supset S \cup\{g\}$.
In particular, $Z(S)$ is connected. In fact $Z(S)=U T$
Two key Lemmas.
 T maximal. torus SCT

$\rightarrow \mathrm{Lie}(T)$
$\left\{\begin{array}{rr}\text { Kronecker Lemma: } & \text { For any torus group } T . \exists x \in t] \\ g=\exp (X) & \text { Satisfies the dosure of }\left\{g^{m}, m \in \mathbb{Z}\right\} \\ \text { Coincides } T & \text { Ire-Takenchip.53-54. Reasonable given } T=\mathbb{S}^{\prime}\end{array}\right.$ Coincides T. Ire- Takenchi p. 53-54. Reasonable given $T=\1
Hopes Lemma. Given any compact connected $G, \forall k$, positive integer
$\forall g \in G, \quad x^{k}=g$ has a solution. Namely $x^{k}=g$ came in solved in the group.
Ire- Trkenchi P54-55
Pf (a) We first pick X et such that $\overline{\exp (s X)}=T=\exp (t)$ the maximal torus.
$\left[\begin{array}{c}\exp : g \rightarrow G_{T} \text { is } v_{1} t_{0} \text { if } G \text { is compare due to the existence of } \\ \text { bi-invariant metric }\end{array}\right]$

For $Y \in g$, We consider $F(g) \doteqdot\langle X, \operatorname{Ad}(g) Y\rangle$. A function or G
F attain its maximum somewhere say g_{0}. Then

$$
\begin{aligned}
& \left.\frac{d}{d s}\right|_{s=0}\left\langle X, \quad \operatorname{Ad}(\exp (s z)) A d\left(g_{0}\right) Y\right\rangle=0 \\
\Rightarrow & \left\langle X, \quad\left[z, \operatorname{Ad}\left(g_{0}\right)(Y)\right]\right\rangle=0 \\
\Rightarrow & \left\langle\left[\operatorname{Ad}\left(g_{0}\right)(Y), X\right], \quad \forall\right\rangle=0 \quad \forall z
\end{aligned} \begin{gathered}
\text { by invariance of } \\
<,\rangle .
\end{gathered}
$$

This implies $A d\left(g_{0}\right)(Y) \in t$, by the following claim
Claim: $\quad z \in t \Leftrightarrow[z, x]=0$
pf: $z \in z$ iff $\operatorname{Ad}(g)(z)=z \quad \forall g \in T$.
Since clearly $A d(g)(z)=z$ if $z \in T$

$$
e^{\operatorname{lachv}_{\operatorname{san}}(z) \exp (s w)} \quad \text { if } w \in t \text {. }
$$

On the other hand $\quad A d(g)(z)=z \Longrightarrow \quad c_{w}(z)=0 \quad \forall \omega \in t$
$\Rightarrow \operatorname{span}\{t, z\}$ is also Abelia, $\Rightarrow z \in t$. This proves (**).
If $\operatorname{z\in t}, \operatorname{Ad}(\exp (s x))(z)=z \quad$ by the above $(* *)$.

$$
\begin{aligned}
& T^{z t} e^{1 " \operatorname{sad} x}(z) \quad \Rightarrow\left[\begin{array}{ll}
x & z
\end{array}\right]=0 \\
& \operatorname{And}_{i f}[x, z]=0 \Rightarrow \quad \operatorname{Ad}(\exp (s x))(z)=z \\
& \Rightarrow A d(T)(z)=Z \quad \Rightarrow z \in Z \text { by the above }
\end{aligned}
$$

The claim proves (c) $\quad \operatorname{Nanaly} A_{d}(g)(z)=z, \forall g \in T-\operatorname{lb}_{y}\left(*^{+}\right)$. Hence the cain
(b) Now pick $X_{i} \in t_{i}$ such that $\overline{\exp \left(s x_{i}\right)}=T_{i}=\exp \left(t_{i}\right)$

$$
B_{y}(a) \nexists g_{i} \quad \operatorname{Ad}\left(g_{i}\right)\left(X_{i}\right) \in T_{i+1}
$$

Namely $\quad Y_{2}=\operatorname{Ad}\left(g_{1}\right)\left(X_{1}\right) \in T_{2}$

$$
\begin{aligned}
& Y_{1}=\operatorname{Ad}\left(g_{2}\right)\left(X_{2}\right) \in T_{1} \quad \varphi(\exp s \omega)=\exp (s \operatorname{d\varphi }(\omega)) \\
\Rightarrow \quad & \underbrace{\operatorname{Ad}\left(g_{1}^{-1}\right)\left(Y_{2}\right)}=X_{1} \Rightarrow \frac{a\left(g_{1}^{-1}\right)\left(\exp \left(s Y_{2}\right)\right)=\exp \left(s X_{1}\right)}{a\left(g_{1}^{-1}\right)\left(\exp \left(s Y_{2}\right)\right)}=\overline{\exp \left(s X_{1}\right)}=T_{1}
\end{aligned}
$$

Namely $\left.T_{1} \subset g_{1}^{-1} T_{2} g_{1}, g_{1} T_{1} g_{1}^{-1} \subset T_{2} \Rightarrow A d\left(g_{1}\right)\left(t_{1}\right)<t_{2}\right\} \Rightarrow$ the macximelity of $\left.T_{1} / t_{1}\right\} \stackrel{\operatorname{Ad}\left(S_{1}\right)\left(t_{1}\right)}{=}$
(c) Smaller is the group, the bigger is the Centralizer.

Let $A=\{S, g\}$ the group jererected
A is Abelian, A_{0} its connected component, which is a torus. Consider A / A_{0} which is a finite group since G is compact.

If $g \in A$. We are done!
Ingeneral $[g]^{m}=0$ fur m large enough.
Let g^{\prime} be the one generate $A_{0} \quad\left(\left\{\left(g^{\prime}\right)^{n}\right\}=A_{0}, k \in \mathbb{Z}\right)$
Consider the equation

$$
z^{m}=\left(g^{m}\right)^{-1} g^{\prime}
$$

Solve it in A., with a solution z.
\Rightarrow Let $x=g z \Rightarrow x^{n}=g^{n} \cdot z^{m}=q^{\prime}$, which generates A 。
Let B be the group generated by $\overline{\operatorname{expcs} X)}$ with $\exp X=x$ B is an Abelien soup.

$$
\begin{aligned}
& A_{0} \subset B \quad \text { since } x^{m}=g^{\prime} \\
\Rightarrow & g \in B \quad \text { since } \quad g=x z_{\in A .}^{-1}
\end{aligned}
$$

Since $S \subset A_{0}, g \in B$
$\Rightarrow S \cup\{y\} \subset B C$ the maximum torus contains B is ${ }^{\text {define }} T$. It satisfies (c).
(2) Weyl group - W(G).

Def: (a) di $(T), T$ a maximal torus is G, is called the rank of G.
(b) Let $N(T)$ be the normalizer of T. for a maximal torus T. $W:=N(T) / T$ is called the weyl group.
If T_{1}, T_{2} are two maximal tori $\Rightarrow \exists g g \quad g T_{1} g^{-1}=T_{2}$
Then $g\left(N\left(T_{1}\right)\right) g^{-1}=N\left(T_{2}\right)$ since $g n_{1} g^{-1}\left(g t_{1} g^{-1}\right)\left(g_{n}, g^{-1}\right)^{-1}$

$$
=g \underbrace{n_{i} t_{i} n_{i}^{-1} g^{-1}}_{i}=g t_{g}^{\prime} g^{-1} \in T_{2}
$$

\& the other direction is similar.
Hence W (uptoanisomorphism) is independent of the choice of T.
properties of W :
prop 3.35 of ziller:
(G) W is finite;
(b) W acts on t via w. $X=A d(n)(x)$. for $w=[n], n \in N(T)$, (is welled fined);
(c) The cation is effective;
(d) If $\operatorname{Ad}(G)(x)$ meets t for $x \in t \Rightarrow n \quad A d(n)(x)=\operatorname{Ad}(g)(x)$. $[n] \in W$
Namely the orbits of X under the adjoint action intersects t, at the orbit of $\operatorname{Ad}(w)(x)$
(e) $A d(G)(x)$ meets t orthogonally, $\forall x \in g$.

Pf: (a) Note $\operatorname{Lie}(N(T))=\{n \mid[n, z] \in t . \forall z \in t\}$
Pick X, as in (1), consider $\langle\underbrace{n, x}_{\tilde{\epsilon}_{t}}], z\rangle \quad \forall z \in t$

$$
=\left\langle n,\left[\begin{array}{ll}
x, & z]\rangle
\end{array} \Rightarrow[n, x]=0\right.\right.
$$

This implies $n \in t$ by (x) in (I)
Hence $\operatorname{Lie}(N(T))=t \quad \Rightarrow \quad(N(T))_{0}=T$
$N(T) / T$ is discrete in a Compact space \Rightarrow mist be finite.
For (b) $\quad n_{1}=n_{2} \cdot a \quad a \in T$

$$
\operatorname{Ad}\left(n_{1}\right)=\operatorname{Ad}\left(n_{2}\right) \operatorname{Ad}(4) \Rightarrow \operatorname{Ad}\left(n_{1}\right)(x)=\operatorname{Ad}\left(n_{2}\right)(x)
$$

Since $A d(c)(x)=x \quad a=\exp (t z) \quad \operatorname{Ad}(\exp (t z))(x)=e^{\operatorname{tad} z}(x)$
For (c) If $A d(n)(x)=x \quad \forall x \in t, \Rightarrow n a n^{-1}=a \quad \forall a \in T$

$$
\Rightarrow n \in Z(T)=T
$$

$$
\Rightarrow \quad[n]=[e]
$$

