For
$$Y \in G$$
. We consider $F(g) \doteq \langle X, Ad(g) Y \rangle$. A function on G
F attain its unaximum somewhere say g_{*} . Then
 $\frac{d}{ds}\Big|_{s=0} \langle X, Ad(exp(sZ)) Ad(f_{0}) Y \rangle = 0$
 $\Rightarrow \langle X, [Z, Ad(g_{0}(Y)] \rangle = 0$ $\forall Z$
 $\Rightarrow \langle [Ad(g_{0}(Y), X], Z \rangle = 0 \quad \forall Z$
 $\Rightarrow [Ad(g_{0}(Y), X] = 0.$
This implies $Ad(g_{0}(Y) \in t, by + bc following claim$
 $\frac{Claim}{2}; Z \in t \iff [Z, X] = 0$ (**)
 $f_{*}: Z \in t \iff [Z, X] = 0$ (**)
 $g_{*}: Z \in t \iff [Z, X] = 0$ (**)
 $g_{*}: Z \in t \iff [Z, X] = 0$ (**)
 $g_{*}: Z \in t \iff [Z, X] = 0$ (**)
 $g_{*}: Z \in t \implies f_{*}: Ad(g_{0}(Z) = Z \quad b \notin g \in T.$ (**)
 $g_{*}: Z \in t \implies f_{*}: Genetic \implies g \in t.$
 $g_{*}: Genetic \implies g \in t.$
 $f_{*}: Genetic \implies g \in t.$

(b) Now prick
$$X_i \in t_i$$
 such that $\overline{\exp(sX_i)} = \overline{T_i} = \exp(t_i)$
 $B_y (a) \equiv j_i$ $Ad(j_i)(X_i) \in \overline{T_{i+1}}$
Namely $Y_2 = Ad(j_i)(X_1) \in \overline{T_2}$.
 $Y_1 = Ad(j_2)(X_2) \in \overline{T_1}$ $p(\exp(sU) = \exp(sA_0U)$
 $\Rightarrow Ad(j_1)(Y_2) = X_1 \Rightarrow a(j_1^{-1})(\exp(sY_2)) = \exp(sA_0U)$
 $\Rightarrow Ad(j_1)(Y_2) = X_1 \Rightarrow a(j_1^{-1})(\exp(sY_2)) = \exp(sX_1)$
 $\Rightarrow a(j_1^{-1})(\exp(sY_1)) = \exp(sX_1) = \overline{T_1}$
Namely $\overline{T_i} \subset g_1^{-1} \overline{T_2} g_1$, $g_1^{-1} g_1^{-1} \subset \overline{T_2} \Rightarrow Ad(g_1)(t_1) \subset t_2$ \Rightarrow
 t_2 t_2
(c) Smeller is the group, the Light is the (entraliger.
Let $A = \{S, S\} \in H_2$ group generated
 A is Abelian, A_0 its connected (imponent, which is
a torus, finsider A/A_0 which is a finite group since (c
is Compact.
If $g \in A$, we are done !
In general $(g_2)^m = 0$ for m large enorgh.
Let g' be the one generates A_0 $(\overline{Ig})_1^{-1} = h, h \in \mathbb{Z})$
Consider the equation $2^m = (g^m)^{-1} g'$

Solve it in A., with a solution Z.

$$\Rightarrow \text{Let } x = gZ \Rightarrow x^{m} = g^{m} Z^{m} = g', \text{ which}$$
Senerates A.
Let B be the group generated by $\exp(sX)$ with $\exp X = x$
B is an Alubian group.
A.CB since $x^{m} = g'$

$$\Rightarrow g \in B \quad \text{since } g = x Z^{-1}$$

$$\Rightarrow G \in B \quad \text{since } g = x Z^{-1}$$

$$\Rightarrow S \cup \{g\} \subset B \subset \text{ the maximum torus contains B is} T.$$

$$\Rightarrow S \cup \{g\} \subset B \subset \text{ the maximum torus contains B is} T.$$

$$2 \text{ Wayl group - W(G)}.$$

$$2 \text{ Wayl group - W(G)}.$$

$$3 \text{ to did (T)}, T < \text{maximal torus in G, is called the read of G.
$$W := N(T)/T \quad \text{is called the way(group.)}.$$
If T, T_{s} are two maximal tori $\Rightarrow \exists f \qquad \exists T, g^{t} = T_{2}$

$$\text{Then } S(N(T_{s}))S^{t} = N(T_{s}) \quad \text{since } gn, S^{s}(St, S^{s})(Sn, T_{s})^{s} \in T_{2}$$

$$& \text{ the other direction is Similor.}$$$$

Hence W (up to an isomorphism) is independent of the choice of T.

Properties of W.
Proposities of Stiller:
(a) W is finite;
(b) W ects on t Vie W: X = Ad(b)(X),
for w=[n], n \in N(T), (is well-d find);
(c) The ectim is effective;
(d) IS Ad(G)(X) meets t for X \in t
$$\Rightarrow$$
 In Ad(b)(X)=Ad(g)(R);
(c) EW
Neurally the orbits of X where the edjoint ection intervects t, at
the orbits of Ad(b)(X) meets t orthogonally, $\forall X \in \P$;
Pf: (c) Note Lie(N(T)) = $\{n \mid [n,2] \in t, \forall 2 \in t\}$
Pick X, as in (c), consider $\langle [n, X], Z \rangle$ $\forall Z \in t$
 $= \langle n, [X, Z] \rangle \Rightarrow [n, X] = 0$
This implies $n \in t$ by (X) in (c)
Hence Lie(N(T)) = $t \Rightarrow (N(T))_0 = T$
 $N(T)/T$ is discrete in < complete spece \Rightarrow must be finite.
For (b) $n_1 = n_2 \cdot \alpha$ $c_1 \in T$
 $Ad(n_1) = Ad(n_2) Ad(c) \Rightarrow Ad(h_1)(X) = Ad(n_2)(X)$
Since $Ad(c)(X) = X$ $a = \exp t Z$ $Ae(exptZ)/X = e^{tad_{2}}(X)$
For (c) If $Ad(n_1)(x) = X \forall X \in t, \Rightarrow nam^2 = A \forall a \in T$
 $\Rightarrow n \in Z(T) = T$.